

When it comes to time-cost trade off in scheduling we are really talking about trying to expedient activities. There are generally two conditions, Normal and Crashed.

- → Normal Schedule : You have the normal schedule if everything is expected and you plan activities and the schedule with no constraints.
- → Crash Schedule: Expediting activities, by applying additional resources
 - -Specialized or additional equipment
 - More people (e.g. borrowed staff, temps)
 - More hours (e.g. overtime, weekends)
- → Crashing a schedule buys time, but nothing comes free

Potential cost areas

- Additional equipment/material
- Extra labor
- Negative effects on other projects
- Reduced morale, from excessive hours/shifts
- -Lower quality, from the pressure of time, inexperienced and tired staff "If you want it bad, you'll get it bad . . ."

When Trying to Crash a Project . . .

- → Two basic principles
 - 1. Generally, focus on the critical path
 - Usually not helpful to shorten non-critical activities
 - Exception: When a scarce resource is needed elsewhere, e.g., in another project
 - 2. When shortening project duration, choose least expensive way to do it
- → Compute cost/time slope for each expedited activity

Slope = $\frac{\text{crash cost} - \text{normal cost}}{\text{crash time} - \text{normal time}}$

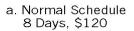
An Example

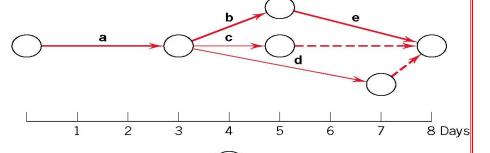
Activity	Predecessor	Days (normal, crash)	Cost (normal, crash)
а	-	3, 2	\$40, 80
b	а	2, 1	20, 80
С	а	2, 2	20, 20
d*	а	4, 1	30, 120
e**	b	3, 1	10, 80

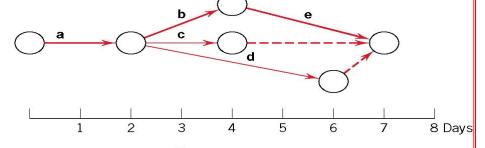
- * Partial crashing allowed
- ** Partial crashing not allowed

Cost per Day to Crash

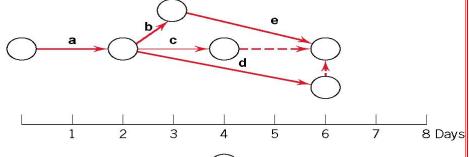
Activity	\$ Saved/Day	
a	40	
b	60	
С	-	
d	30	
е	70 (2 days)	

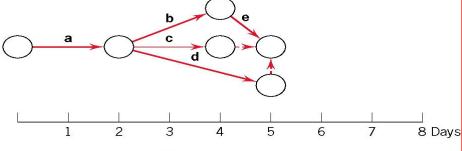


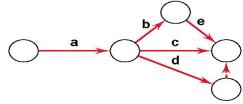

SCHEDULING



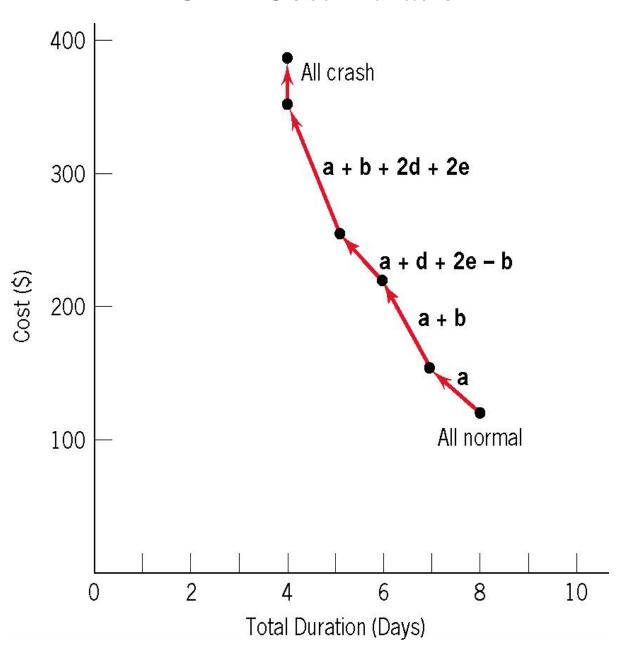
A CPM Example




b. 7-Day Schedule, \$160


c. 6-Day Schedule, \$220

d. 5-Day Schedule, \$260


e. 4-Day Schedule, \$350

CPM Cost-Duration

Another Approach to Expediting: Fast-tracking/Concurrency

- Different terms for similar concept
 - "Fast-tracking" (construction), "Concurrent engineering" (manufacturing)
 - Both refer to overlapping project phases
 - E.g., design/build, or build/test

→ Pros:

- Can shorten project duration
- Can reduce product development cycles
- Can help meet clients' demands

\rightarrow Cons:

 Can increase cost through redesigns, excessive changes, rework, out-of-sequence installation, and more

As the saying goes "Cost, Schedule, or Performance: Pick Any Two . . ."

