Essential components of concrete are portland cement, aggregate, and water. Admixtures/additives are usually added to impart certain specific properties to the concrete mix. A unit weight of 150 lbs/cf is usually assumed for designed purposes. Also the 28day compressive strength for normal concrete ranges from 2000-4000 psi with a slump of 1-3 inches.

Cement: There are five types of Cement as classified by ASTM, Type I-V;

- Type I: Normal, used for general purposes
- Type II: Modified better resistance to alkali attack and produces less heat of hydration than Type I.
- Type III: High Early Strength provides 190% of Type I strength after 1 day of curing.
- Type IV: Produces only 40% to 60% of the heat hydration than Type I.
- Type V: Provides highest resistance to alkali attack, 7 day strength is only 75% of normal cement. Use this when the concrete is in contact with soil or water is very high in sulfate.

There are other characteristics for special cement according to ASTM;

- Type IA, IIA, IIIA: Same as Type I, II, III except with the addition of an air entrainment agent.
- Type IS: Same as Type I except produced from a mixture of blast furnace slug.
- Type IP: Same as Type I except contains Pozzolan.

Aggregates: Use to reduce cost of the mix and to reduce shrinkage. It makes up 60–75% of the concrete volume.

Water: Need to provide moisture required for hydration of the cement to take place. Hydration is the chemical reaction between cement and water which produces hardened cement.
Concrete Proportioning and Placement

→ **Water/Cement Ratio:**

- The strength, water tightness, durability and wear resistance of the concrete are related to the Water/Cement Ratio of the concrete mix design.

- The lower the Water/Cement Ratio the greater the strength/durability

- Usually the Water/Cement Ratio is between .40 - .60 by weight

- Seawater can be used but strength is 10-20% lower than normal.

→ **How to do a Mix Design:**

- Typical a Mix is about 10-15% cement, 60-75% aggregate and 15-20 water. Entrained air in many concrete mixes may also take up another 5-8%.

- The goal of the Mix Design is selecting the most economical concrete mix that meets the requirements of the hardened concrete while providing acceptable workability. This is accomplished by using the highest ratio of aggregate to cement while providing acceptable workability at the required water/cement ratio. Follow these steps;

- Step 1: Select a Water/Cement ratio that satisfies requirements for concrete strength, durability, and water tightness.

Table 3-1. Maximum W/C ratios for various exposure conditions

<table>
<thead>
<tr>
<th>Exposure Condition</th>
<th>Normal-Weight Concrete (Absolute W/C Ratio by Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete protected from exposure to freezing and thawing or the application of deleterious chemicals</td>
<td>Select a W/C ratio on the basis of strength, workability, and finishing needs</td>
</tr>
<tr>
<td>Watertight concrete*</td>
<td>0.50</td>
</tr>
<tr>
<td>• In fresh water</td>
<td>0.50</td>
</tr>
<tr>
<td>• In concrete</td>
<td>0.45</td>
</tr>
<tr>
<td>Frost-resistant concrete*</td>
<td>0.45</td>
</tr>
<tr>
<td>• Thin sections, any section with less than a 2-in. cover over reinforcement and any concrete exposed to deicing salts</td>
<td>0.45</td>
</tr>
<tr>
<td>• All other structures</td>
<td>0.50</td>
</tr>
<tr>
<td>Exposure to sulfates*</td>
<td>0.50</td>
</tr>
<tr>
<td>• Moderate</td>
<td>0.50</td>
</tr>
<tr>
<td>• Severe</td>
<td>0.45</td>
</tr>
<tr>
<td>Concrete placed underwater</td>
<td>Do not use less than 550 pounds of cement per cubic yard (386 kg/m³).</td>
</tr>
<tr>
<td>Floors on grade</td>
<td>Select W/C ratio for strength, plus minimum cement requirements described in Table 5-7, page 5-14.</td>
</tr>
</tbody>
</table>

Table 3-2. Maximum permissible W/C ratios for concrete

<table>
<thead>
<tr>
<th>Specified Compressive Strength, in psi*</th>
<th>Maximum Absolute Permissible W/C Ratios by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-air-Entrained Concrete</td>
<td>Air-Entrained Concrete</td>
</tr>
<tr>
<td>2,600</td>
<td>0.67</td>
</tr>
<tr>
<td>3,000</td>
<td>0.58</td>
</tr>
<tr>
<td>3,500</td>
<td>0.51</td>
</tr>
<tr>
<td>4,000</td>
<td>0.44</td>
</tr>
<tr>
<td>4,500</td>
<td>0.38</td>
</tr>
<tr>
<td>5,000</td>
<td>**</td>
</tr>
</tbody>
</table>

Note: 1,000 psi = 7 MPa.

*28-day strength. The W/C ratios will provide average strengths that are greater than the specified strengths.

**For strength above 4,500 psi (non-air-entrained concrete) and 4,000 psi (air-entrained concrete), proportions should be established by the trial-batch method.

* For the properties of watertight concrete, frost-resistant concrete and exposure to sulfates, use designing strength for air-entrained concrete.
Concrete proportioning and placement

- **Step 2:** Select the workability or slump required.

 Table 7-5 Recommended slumps for various types of construction (Courtesy of Portland Cement Association)

<table>
<thead>
<tr>
<th>Concrete construction</th>
<th>Maximum*</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced foundation walls and footings</td>
<td>75 (3)</td>
<td>25 (1)</td>
</tr>
<tr>
<td>Plain footings, caissons, and substructure walls</td>
<td>75 (3)</td>
<td>25 (1)</td>
</tr>
<tr>
<td>Beams and reinforced walls</td>
<td>100 (4)</td>
<td>25 (1)</td>
</tr>
<tr>
<td>Building columns</td>
<td>100 (4)</td>
<td>25 (1)</td>
</tr>
<tr>
<td>Pavements and slabs</td>
<td>75 (3)</td>
<td>25 (1)</td>
</tr>
<tr>
<td>Mass concrete</td>
<td>75 (3)</td>
<td>25 (1)</td>
</tr>
</tbody>
</table>

*Many be increased 25 mm (1 in.) for consolidation by hand methods, such as rodding and spading. Plasticizers can safely provide higher slumps. Adapted from ACI 211.1

- **Step 3:** Mix a trial batch:

 → A number of different methods have been used to proportion concrete ingredients including 1. Void Ratio, 2. Fineness modulus, 3. Surface Area of aggregate, 4. Cement content, also just plain 5. Arbitrary assignment (1:2:3). However, the best approach is to use past experience combined with reliable test data with established relationships between the strength of concrete and w/c ratio for the material being used.

 → During the PE test, they will give you the mix design. You will just have to figure out a few things about it. Which I will go over next:
Material Quality Control and Production

Concrete Proportioning and Placement

- **Trick of Trade #1: Some formulas you should know:**
 - Water/Cement Ratio = Weight of Water (lbs) / Weight of Cement (lbs)
 - Air Content (%) = Volume of Air (cf) / Total Volume of Concrete (cf)
 - Volume of material (cf) = \(\frac{\text{Weight of material (lbs)}}{(62.4) \times \text{specific gravity of material}} \)
 - If you know the density of the material then, \(V = \frac{\text{Weight of material (lbs)}}{\text{density of material (lbs/cf)}} \)

- **Trick of Trade #2: Some things you should know:**
 - Bag/sack of cement = 94 lbs
 - One gallon of water = 8.34 lbs
 - Density = Weight(lbs)/Volume(cf)
 - Specific gravity = Density of material/Density of water
 - Density of Water = 62.4 lbs/cf or 1000 kg/cubic meter
 - Total Volume of Concrete = Vol(cement) + Vol(sand) + Vol(Aggregates) + Vol(water) + Vol(air)
 - 1 liter = 1 kg
 - A mix design written as 1: 2: 2.5 and is stated by weight, means 1 lbs of cement has to be mixed with 2 lbs of sand and 2.5 lbs of coarse aggregates
Question #1: If it is known that it takes 7 sack of portland cement to make 1 cubic yard of concrete, and you know that 12% is cement and 23% is water. What is the Water/Cement ratio of the concrete mix most near?

Ans:

a. .45
b. .39
c. .59
d. .66

Question #2: If the Total volume of concrete is 4.00 CY and the Air Content is 6.0.

What is the Total Volume of the Solids in the Concrete?

Ans:

a. 3.76 CY
b. 4.39 CY
c. 4.00 CY
d. .23 CY
Answer #1:

Step 1: Find the Weight of Cement per CY

→ Weight of Cement = (7 sacks/CY)(94lbs/sack) = 658 lbs/CY

Step 2: Find the Weight of Water

→ Weight of Water = (.23) (62.4lbs/cf) (27cf/cy) = 387.5lbs/CY

Step 3: Find the Water/Cement Ratio:

→ 387.5lbs/658lbs = .59

Answer #2:

Step 1: Find the Volume of Air.

→ Air Content (%) = Volume of Air (cy) / Total Volume of Concrete (cy)
→ .06 = Volume of Air/4.00cy
→ Volume of Air = (.06)(4cy) = .24cy

Step 2: Find the Volume of the solids.

→ Total Volume = Volume of Solids + Volume of Air
→ 4CY = Volume of Solids + .24cy
→ Volume of Solids = 4cy - .24cy = 3.76 cy
Question #3: When figuring out the mix design of concrete for a project, one of the test batch proportions are set at 1:2.5:3. The specific gravity of material in the test batch are:
Course Aggregate: 2.8
Sand: 2.5
Portland Cement: 3.15

It the specification of the contract it states that at least 6.0 sacks of cement has to be used per cubic yard(cy) of concrete.

What is the Water/Cement ratio of the concrete mix most near?

Ans:
a. .45
b. .29
c. .57
d. .63
CONCRETE MIX DESIGN

Answer #3:

→ When you are given proportions, specific gravity you know it is a volume mix design problem.

→ I usually think about first – What am I trying to find? Which is Water/Cement Ratio. So I need the Weight of the water and the Weight of the cement. So we need to figure out what is the weights per cubic yard of concrete.

Step 1: Find the Weight of Cement per CY

→ Weight of Cement = (6 sacks/CY)(94lbs/sack) = 564 lbs/CY

Step 2: Find the Volumes of each concrete component so you can figure out how many CY of water are in the CY of concrete.

→ Volume of material (cf) = \(\frac{\text{Weight of material (lbs)}}{\text{(62.4) x specific gravity of material}} \)

→ Volume of Concrete = \(\frac{564 \text{ lbs/CY}}{(62.4 \text{ lbs/CF}) \times 3.15 \times (27 \text{CF/CY})} \) = .11 CY

→ Volume of Aggregate = \(\frac{564 \text{ lbs/CY} \times (2.5)}{(62.4 \text{ lbs/CF}) \times 2.8 \times (27 \text{CF/CY})} \) = .30 CY

→ Volume of Sand = \(\frac{564 \text{ lbs/CY} \times (3.0)}{(62.4 \text{ lbs/CF}) \times 2.5 \times (27 \text{CF/CY})} \) = .40 CY

→ Volume of Water = 1CY - .11CY - .30 CY - .40 CY = .19 CY of Water / CY concrete

Step 3: Find the Weight of Water per CY:

→ Weight of Water: (.19CY) (62.4 lbs/CF) (27CF/CY) = 320.1 lbs/CY concrete

Step 4: Find the Water/Cement Ratio:

→ Water/Cement Ratio = Weight of Water (lbs) / Weight of Cement (lbs)

= 320.1 lbs / 564 lbs = .57